python3利用skip-gram实现词的相关性查找
n-gram原理( https://blog.csdn.net/baimafujinji/article/details/51281816)
#! -*- coding:utf-8 -*-
# 此函数作用是对初始语料进行分词处理后,作为训练模型的语料
import sys
# reload(sys)
# sys.setdefaultencoding('utf-8')
from gensim.models import word2vec
import gensim
import logging
import jieba
import os
import codecs
def cut_txt(old_file):
# global cut_file # 分词之后保存的文件名
cut_file = old_file + '_cut.txt'
try:
fi = codecs.open(old_file, 'r',encoding='utf-8')
except BaseException as e: # 因BaseException是所有错误的基类,用它可以获得所有错误类型
print(Exception, ":", e) # 追踪错误详细信息
text = fi.read() # 获取文本内容
new_text = jieba.cut(text, cut_all=False) # 精确模式
# str_out = ' '.join(new_text).replace(',', '').replace('。', '').replace('?', '').replace('!', '') \
# .replace('“', '').replace('”', '').replace(':', '').replace('…', '').replace('(', '').replace(')', '') \
# .replace('—', '').replace('《', '').replace('》', '').replace('、', '').replace('‘', '') \
# .replace('’', '') # 去掉标点符号
fo = codecs.open(cut_file, 'w',encoding='utf-8')
fo.write(' '.join(new_text))
def model_train(train_file_name, save_model_file): # model_file_name为训练语料的路径,save_model为保存模型名
# 模型训练,生成词向量
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
sentences = word2vec.Text8Corpus(train_file_name) # 加载语料
model = gensim.models.Word2Vec(sentences, size=200,min_count=1,window=3) # 训练skip-gram模型; 默认window=5
model.save(save_model_file)
model.wv.save_word2vec_format(save_model_name + ".bin", binary=True) # 以二进制类型保存模型以便重用
if __name__ == '__main__':
# global cut_file
#hsds.txt_cut.txt 已经切割好的文本
#hsds.txt 原始文本
cut_file='hsds.txt_cut.txt'
if not os.path.exists(cut_file): # 判断文件是否存在,参考:https://www.cnblogs.com/jhao/p/7243043.html
cut_txt('hsds.txt') # 须注意文件必须先另存为utf-8编码格式
# cut_file='cutWord2.txt'
#test_word2vec1.model 训练好的模型
save_model_name = 'word2vec1.model'
if not os.path.exists(save_model_name): # 判断文件是否存在
model_train(cut_file, save_model_name)
else:
print('此训练模型已经存在,不用再次训练')
# 加载已训练好的模型
model_1 = word2vec.Word2Vec.load(save_model_name)
# 计算两个词的相似度/相关程度
y1 = model_1.similarity("赵敏", "韦一笑")
print(u"赵敏和韦一笑的相似度为:", y1)
# print("-------------------------------\n")
# 计算某个词的相关词列表
y2 = model_1.most_similar(u"赵敏", topn=5) # 10个最相关的
# print(u"和apple最相关的词有:\n")
for item in y2:
print(item[0],item[1])
print("-------------------------------\n")