import pandas as pd
import numpy as np
from scipy.interpolate import lagrange #导入拉格朗日插值函数
import sys
class Lag():
def do(self):
result = pd.DataFrame([235.8333, 236.2708, 238.0521, 235.9063, 236.7604, None, 237.4167, 238.6563, 237.6042, 238.0313, 235.0729, 235.5313, None, 234.4688, 235.5, 235.6354, 234.5521, 236.0, 235.2396, 235.4896, 236.9688])
for i in range(len(result[0])):
if result[0].isnull()[i]:
result[0][i] = self.ployinterp_column(result[0], i)
print(result)
#自定义列向量插值函数
#s为列向量,n为被插值的位置,k为取前后的数据个数,默认为5
def ployinterp_column(self,s, n, k=5):
y = s[list(range(n-k, n)) + list(range(n+1, n+1+k))] #取数
y = y[y.notnull()] #剔除空值
return lagrange(y.index, list(y))(n) #插值并返回插值结果
if __name__=='__main__':
lag = Lag()
lag.do()